<table>
<thead>
<tr>
<th>Date</th>
<th>#</th>
<th>Objective</th>
<th>Classroom Notes</th>
<th>Graded Assignments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/11/15</td>
<td>5.NF.6</td>
<td>I CAN solve real world problems, involving multiplication of fractions and mixed numbers, ex., by using visual fraction models or equations to represent the problem.</td>
<td>Multiplying Fractions and Whole Numbers</td>
<td>Quick Check: Multiplying Whole Numbers and Fractions, Multiplying Mixed Numbers, and Multiplying Fractions.</td>
</tr>
<tr>
<td>1/17/15</td>
<td>5.NF.6</td>
<td>I CAN solve real world problems, involving multiplication of fractions and mixed numbers, ex., by using visual fraction models or equations to represent the problem.</td>
<td>Multiplying Fractions</td>
<td></td>
</tr>
<tr>
<td>1/18/15</td>
<td>5.NF.6</td>
<td>I CAN solve real world problems, involving multiplication of fractions and mixed numbers, ex., by using visual fraction models or equations to represent the problem.</td>
<td>Multiplying Mixed Numbers</td>
<td></td>
</tr>
<tr>
<td>2/25/15</td>
<td>5.NF.6</td>
<td>I CAN solve real world problems, involving multiplication of fractions and mixed numbers, ex., by using visual fraction models or equations to represent the problem.</td>
<td>Estimating Products of Fractions</td>
<td></td>
</tr>
<tr>
<td>2/26/15</td>
<td>5.NF.4B</td>
<td>I CAN find the area of a rectangle with fractional side lengths by tiling it with unit squares of the appropriate unit fraction side lengths, and show that the area is the same as would be found by multiplying the side lengths. Multiply fractional side lengths to find areas of rectangles, and represent fraction products as rectangular areas.</td>
<td>Area Using Fractional Amounts</td>
<td>Quick Check: Estimating Fractional Products, Area using Fractional Amounts, and Multiplying as Scaling</td>
</tr>
<tr>
<td>2/27/15</td>
<td>5.NF.5</td>
<td>Interpret multiplication as scaling (resizing), by: a. Comparing the size of a product to the size of one factor on the basis of the size of the other factor, without performing the indicated multiplication.</td>
<td>Multiplying as Scaling</td>
<td></td>
</tr>
<tr>
<td>3/2/15</td>
<td>5.NF.7</td>
<td>I can apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions.</td>
<td>Dividing Whole Numbers and Fractions</td>
<td>Quick Check: Dividing Whole Numbers and Fractions</td>
</tr>
<tr>
<td>3/2/15</td>
<td>5.NF.7</td>
<td>CAN apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions.</td>
<td>Dividing Fractions</td>
<td></td>
</tr>
</tbody>
</table>

Italicized = Classroom Guided Notes Bold = Graded Assignments Underlined required = TEST or QUIZ.
Multiplying and Dividing Fractions Lesson 1

Multiplying a Fraction by a Whole Number:

- Remember “of” in mathematics means to **multiply**.

\[
\frac{1}{2} \times 46
\]

Step 1: Change your **whole number** to a **fraction** by adding a one underneath.

\[
\frac{1}{2} \times \frac{46}{1}
\]

Step 2: Multiply your **numerator** straight across.

\[
\frac{1}{2} \times \frac{46}{1} = \frac{46}{2}
\]

Step 3: Then multiply your **denominator** straight across.

\[
\frac{1}{2} \times \frac{46}{1} = \frac{46}{2}
\]
Step 4:

- Simplify your answer.

In this case we change an improper fraction to a mixed number or a whole number.

\[\frac{1}{2} \times \frac{46}{1} = \frac{46}{2} = 23 \]

Practice:

\[\frac{1}{3} \text{ of } 36 \]

\[\frac{1}{3} \times \frac{36}{1} = \frac{36}{3} = 12 \]

Talk Math: Explain how you could find the product of 50 and \(\frac{2}{5} \) mentally?

\[\frac{50}{1} \times \frac{2}{5} = \frac{100}{5} \]

- Step 1: Make a fraction by putting 1 as a denominator.
- Step 2: Multiply numerator \(\rightarrow 50 \times 2 = 100 \)
- Step 3: Multiply denominator \(\rightarrow 1 \times 5 = 5 \)
- Step 4: Divide 5 into 100 which equals 20
Independent Practice:

1. \(\frac{1}{3} \times \frac{12}{1} = \frac{12}{3} = 4 \)
2. \(\frac{1}{4} \times 20 = \frac{20}{4} = 5 \)
3. \(\frac{5}{6} \times 18 = \frac{90}{6} = 15 \)

-parcc practice:

On Sunday, Travis bought the carton of eggs pictured below.

- On Monday, Travis used \(\frac{1}{4} \) of the eggs in the carton.
- On Tuesday, Travis used \(\frac{2}{3} \) of the eggs that remained in the carton after Monday.

Which picture represents the number of eggs remaining in the carton after Travis used eggs on Tuesday?

a. [Image a]
b. [Image b]
c. [Image c]

Monica and Ryan shared 36 cookies. Monica ate \(\frac{1}{6} \) of the cookies. Ryan ate \(\frac{2}{3} \) of the cookies.

How many cookies were left?

A. 12
B. 29
C. 4
D. 6
Exit Ticket:

The weights of items in a hardware store are shown. How many pounds do 8 screwdrivers weigh? Show the steps used to solve.

<table>
<thead>
<tr>
<th>Item</th>
<th>Weight (pounds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>hammer</td>
<td>(\frac{5}{7})</td>
</tr>
<tr>
<td>screwdriver</td>
<td>(\frac{4}{9})</td>
</tr>
<tr>
<td>bolt</td>
<td>(\frac{2}{11})</td>
</tr>
</tbody>
</table>

The weight of 8 screwdrivers is

At home connection:
Teach the steps to multiplying a fraction by a whole number to a parent or guardian. Please have parent or guardian sign below indicating they were taught steps to multiplying a fraction by a whole number.

Solve the following problem.

\[\frac{3}{4} \times 20 \]
Multiplying and Dividing Fractions Lesson 2
Multiplying Fractions

Standard: 5.NF.6
I CAN: Solve real-world problems, including multiplication of fractions and mixed numbers, ex., by using visual fraction models or equations to represent the problem.

Essential Question: What strategies can be used to multiply and divide fractions?

Multiplying Fractions:

Step 1: When you see a fraction problem you know when you read “of” in the problem you multiply \(\frac{1}{2} \times \frac{3}{4} \)

Step 2: Multiply your numerator straight across
\(\frac{1}{2} \times \frac{3}{4} = \frac{4}{8} \)

Step 3: Multiply your denominator straight across
\(\frac{1}{2} \times \frac{4}{8} = \frac{4}{18} \)

Step 4: Simplify your product
Practice:

1. \(\frac{1}{4} \times \frac{2}{3} = \frac{2}{10} \div \frac{2}{3} = \frac{1}{9} \)

2. \(\frac{1}{6} \times \frac{3}{5} = \frac{9}{30} \div \frac{3}{5} = \frac{3}{16} \)

3. \(\frac{7}{2} \times \frac{4}{3} \times \frac{2}{6} = \frac{42}{3} \)

\(\times \frac{44}{6} \div \frac{2}{3} = \frac{42}{3} \)

\(\frac{6}{28} \div \frac{2}{4} = \frac{24}{4} \)

Independent Practice:

1. \(\frac{5}{6} \times \frac{3}{4} = \frac{15}{24} \div \frac{3}{3} = \frac{5}{8} \)

2. \(\frac{3}{10} \times \frac{5}{6} = \frac{15}{60} \div \frac{6}{5} = \frac{3}{12} \div \frac{3}{3} = \frac{1}{4} \)

\(\times \frac{3}{4} \div \frac{2}{7} = \frac{6}{28} \div \frac{2}{2} = \frac{3}{14} \)

Talk Math: Will the product of \(\frac{2}{9} \times \frac{1}{3} \) be the same as \(\frac{2}{9} \times \frac{2}{3} \)? Explain.

\(\frac{2}{9} \times \frac{1}{3} = \frac{2}{27} \)

\(\frac{2}{9} \times \frac{2}{3} = \frac{4}{27} \)

Yes, the product will be the same because \(\frac{2}{9} \times \frac{1}{3} = \frac{2}{27} \) and \(\frac{2}{9} \times \frac{2}{3} = \frac{4}{27} \) which equals \(\frac{2}{27} \).
PARCC Practice:

1. There is $\frac{1}{3}$ of a container of juice left. Alicia drinks $\frac{1}{2}$ of the juice that is left.

Part A

Draw a model to represent the problem.

\[
\frac{1}{2} \text{ of } \frac{1}{3} = \frac{1}{6}
\]

\[
\frac{1}{2} \times \frac{1}{3} = \frac{1}{6}
\]

Part B write & solve an equation for the model.

\[
\frac{1}{2} \times \frac{1}{3} = \frac{1}{6}
\]

Exit Ticket:

\[
\frac{3}{4} \times \frac{2}{5} =
\]

\[
\frac{3}{5} \times \frac{5}{6} =
\]
Multiplying and Dividing Fractions Lesson 3
Multiplying Fractions and Mixed Numbers

Standard: 5.NF.6
I CAN solve real world problems involving multiplication of fractions and mixed numbers, ex., by using visual fraction models or equations to represent the problem.

Essential Question: What strategies can be used to multiply and divide fractions?

- whole # by a fraction
- fraction by a fraction
- mixed number

Steps to Multiplying a Fraction and a Mixed Number:

Step 1: Change the mixed number to an improper fraction

Step 2: Multiply the numerators straight across

Step 3: Multiply the denominators straight across

Step 4: Simplify your answer

\[
\frac{1\frac{1}{3}}{\frac{1}{2}} \times \frac{2\frac{2}{3}}{\frac{1}{2}} = \frac{8}{3} = 1\frac{1}{3}
\]

\[
\frac{1\frac{2}{3}}{\frac{1}{2}} = \frac{1\frac{1}{3}}{\frac{1}{2}}
\]
Guided Practice:

1. \(\frac{11}{3} \times \frac{2}{3} = \frac{11}{3} \times \frac{2}{3} = \frac{22}{9} = 1\frac{1}{3} \)

2. \(\frac{2}{5} \times \frac{3}{4} = \frac{2 \times 3}{5 \times 4} = \frac{6}{20} = 1\frac{1}{10} \)

Practice:

\[
\begin{align*}
\frac{\cancel{2}}{5} \times \frac{\cancel{11}}{\cancel{4}} &= \frac{22}{20} = 1\frac{1}{10} \\
\frac{\cancel{1\frac{2}{5}}}{\cancel{2}} &= 1\frac{1}{10}
\end{align*}
\]

Talk Math: Explain how to find the product of two mixed numbers?

To find the product of two mixed numbers, change both mixed numbers to improper fractions. Then multiply the numerators straight across. Next, multiply the denominators straight across. Finally, simplify your product.
PARCC Practice:

1. Austin collected $30 \frac{9}{10}$ kilograms of glass for recycling. Exactly $\frac{2}{3}$ of the glass he collected was blue. What was the total amount, in kilograms, of blue glass Austin collected?

A. $20 \frac{3}{5}$
B. $27 \frac{2}{3}$
C. $30 \frac{3}{5}$
D. $30 \frac{11}{13}$

Exit Ticket:

$5 \frac{1}{3} \times 1 \frac{1}{4} =$

$1 \frac{2}{5} \times 2 \frac{1}{6} =$
Multiplying and Dividing Fractions Lesson 4
Estimating Products of Fractions

Standard: 5.NF.6
I CAN solve real world problems involving multiplication of fractions and mixed numbers, ex., by using visual fraction models or equations to represent the problem.

Essential Question: What strategies can be used to multiply and divide fractions?

Estimating Fractions with Whole Number:

- When estimating fractions and a whole number use compatible numbers

Step 1: Make the whole numbers compatible with the denominator.

Step 2: Rewrite the problem with compatible numbers.

Step 3: Divide the whole number by the denominator.

Step 4: Multiply the quotient by the numerator.

EX:
\[
\frac{5}{7} \times 41
\]

\[
7 \times 5 \approx 35
\]
Guided Practice:

1. \(\frac{3}{7} \times 2 \frac{2}{3} \) or \(\frac{3}{7} \times 2 \frac{1}{3} = \frac{63}{7} = 9 \)

Estimating a Mixed Number by a Mixed Number:

Step 1: Round each \(\text{mixed number} \) to the nearest \(\text{whole number} \).

Step 2: Multiply

Ex: \(10 \frac{\frac{2}{3}}{\frac{1}{3}} \times 3 \frac{1}{2} \)

\(\downarrow \quad \downarrow \)

\(11 \times 3 \approx 33 \)

Guided Practice:

1. \(12 \frac{\frac{2}{9}}{\frac{1}{3}} \times 2 \frac{\frac{1}{2}}{\frac{1}{2}} \)

\(\downarrow \quad \downarrow \)

\(12 \times 2 = 24 \)

Estimating a Fraction by a Fraction:

Step 1: Round each \(\text{fraction} \) to the nearest \(\text{benchmark} \).

Step 2: Multiply

Ex: \(\frac{1}{7} \times \frac{4}{9} \)

\(\frac{1}{7} \times \frac{4}{9} \approx 0 \)
Guided Practice:

1. \[\frac{4}{9} \times \frac{5}{11} \]

Practice:

\[\frac{2}{3} \times 13 \approx 8 \]
\[\frac{2}{3} \times 13 \downarrow \]
\[\frac{2}{3} \times 12 \approx 8 \]

\[\frac{3}{5} \times \frac{8}{9} \approx \frac{1}{2} \]
\[\frac{3}{5} \times \frac{8}{9} \downarrow \]
\[\frac{1}{2} \times \frac{1}{2} \approx \frac{1}{2} \]

\[\frac{2\frac{2}{3}}{3} \times \frac{3\frac{1}{6}}{3} \approx 9 \]

Talk Math: Explain how you would estimate the product of \(\frac{4}{5} \times \frac{5}{6} \).

First, I would estimate \(\frac{4}{5} \) to 1, then I would estimate \(\frac{5}{6} \) to 1, which gives me an estimated product of 1.
PARCC Practice:

A cup of chocolate chips weighs about 9 ounces. A recipe calls for $3\frac{3}{4}$ of chocolate chips. About how many ounces of chocolate chips are needed?

A. 20 ounces
B. 27 ounces
C. 36 ounces
D. 42 ounces

\[
9 \times \frac{3}{4} = 36
\]

Exit Ticket:

Estimate each product. Draw a bar diagram if necessary.

1. $\frac{2}{3} \times 26$
2. $\frac{7}{8} \times \frac{5}{6}$
3. $5\frac{1}{2} \times 8\frac{5}{6}$
Multiplying and Dividing Fractions Lesson 5
Area Using Fractional Amounts

Standard: 5.NF.4B
I CAN find the area of a rectangle with fractional side lengths by tiling it with unit squares of the appropriate unit fraction side lengths, and show that the area is the same as would be found by multiplying the side lengths. Multiply fractional side lengths to find areas of rectangles, and represent fraction products as rectangular areas.

Review of Area:

- Area = Length x Width

Area-Using Fractional Amounts

When you are multiplying a fraction times a fraction, you are actually finding a part of a part. Let's look at what each piece would look like first.

\[
\frac{3}{4} \times \frac{2}{5}
\]

By tiling the rectangle in this way, it is easy to see that the area of the yard would be \(\frac{6}{20} \) square miles.
Guided Practice:

The area of the entire figure below is 1.
The purple striped rectangle has width $\frac{4}{5}$ and height $\frac{1}{5}$.

What is the area of the purple striped rectangle?
Enter your answer as a fraction in lowest terms.

$$\frac{4}{5} \times \frac{4}{5} = \frac{16}{25}$$

Practice:

1. $3\frac{1}{2}$ in $\times 2\frac{2}{3}$ in

$$\frac{7}{2} \times \frac{8}{3} = \frac{56}{6} = 9\frac{1}{3}$ in2
PARCC Practice:

What is the area, in square inches, of a rectangle with the dimensions shown in the diagram below?

\[
\frac{7}{8} \times \frac{3}{16} = \frac{21}{128}
\]

A \[\frac{21}{128}\]
B \[\frac{3}{14}\]
C \[\frac{10}{24}\]
D \[\frac{24}{112}\]

Use this rectangle to solve the problem.

What is the area, in square centimeters, of the rectangle?

\[
4\frac{1}{2} \times 8\frac{1}{2} = 32\frac{1}{4}
\]

A \[32\frac{1}{4}\]
B \[32\frac{1}{2}\]
C \[38\frac{1}{4}\]
D \[38\frac{1}{2}\]
Exit Ticket

2) $\frac{3}{5}$ m

3) $\frac{4}{9}$ ft
Multiplying and Dividing Fractions Lesson 6
Multiplying as Scaling

Standard: 5.NF.5a
I CAN interpret multiplication as scaling (resizing), by:
 a. Comparing the size of a product to the size of one factor on the basis of the size of the other factor, without performing the indicated multiplication.

Essential Question: What strategies can be used to multiply and divide fractions?

- Estimating
- Fraction by fraction
- Whole # by fraction
- Mixed Numbers
- Area

Scaling is the process of resizing a number when you multiply by a fraction that is greater than or less than 1.

Improper fraction → greater than 1
A fraction with a numerator that is greater than its denominator has a value greater than one.

Equal to (Identity)
A fraction that has the same numerator and denominator is equivalent to one.

Proper fraction → less than 1
A fraction with a numerator that is less than its denominator has a value less than one.
Guided Practice:

1. \(2\frac{1}{2} \times 3\frac{2}{3} \quad \square \quad 3\frac{2}{3}\)
2. \(2\frac{1}{2} \times \frac{50}{50} \quad \square \quad 2\frac{1}{2}\)
3. \(\frac{1}{3} \times 8\frac{2}{5} \quad \square \quad 8\frac{2}{5}\)
4. \(1\frac{1}{2} \times \frac{1000}{1000} \quad \square \quad 1\frac{1}{2}\)
5. \(\frac{3}{8} \times 7\frac{1}{3} \quad \square \quad 7\frac{1}{3}\)

Practice:

Without multiplying, circle whether each product is greater than, less than, or equal to the whole number.

3. \(2 \times \frac{1}{8}\) greater than
 less than
 equal to

4. \(10 \times \frac{3}{5}\) greater than
 less than
 equal to

5. \(\frac{3}{4} \times 4\) greater than
 less than
 equal to

6. \(12 \times \frac{5}{6}\) greater than
 less than
 equal to

*The only time it is greater, both factors have to be mixed numbers or improper fractions

ex. \(2\frac{1}{2} \times 3\frac{1}{3} > 2\frac{1}{2}\)
PARCC Practice:

1. Without performing actual calculation, which of the following is true?

 A. \(\frac{8}{11} \times \frac{7}{4} < \frac{4}{7} \)

 B. \(\frac{6}{10} \times \frac{7}{8} > \frac{6}{10} \)

 C. \(\frac{3}{8} \times \frac{10}{6} = \frac{3}{8} \)

 D. \(\frac{1}{9} \times \frac{3}{3} = \frac{1}{9} \)

2. When Angela solved the problem \(\frac{1}{3} \times \frac{2}{3} \) she got an answer of \(\frac{2}{9} \). This confused Carissa. She thought the answer was incorrect because she always thought multiplication results in a product larger than the factors.

 Use what you know about multiplying fractions to explain why Angela’s answer is correct.

 Angela’s answer is correct because both factors \(\frac{1}{3} \) and \(\frac{2}{3} \) are proper fractions which means the product will be less than.

Exit Ticket

Without multiplying, circle whether each product is greater than, less than, or equal to the whole number.

1. \(4 \times \frac{1}{7} \)

2. \(12 \times \frac{5}{6} \)

greater than less than equal to greater than less than equal to
Multiplying and Dividing Fractions Lesson 7
Dividing Whole Numbers and Fractions

Standard: 5.NF.7
I CAN apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions.

Essential Question: What strategies can be used to multiply and divide fractions?

<table>
<thead>
<tr>
<th>Multiplication</th>
<th>Division</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Whole number by a fraction</td>
<td>- Whole number by a fraction</td>
</tr>
<tr>
<td>- Fraction by fraction</td>
<td></td>
</tr>
<tr>
<td>- Estimating</td>
<td></td>
</tr>
<tr>
<td>- Mixed Numbers</td>
<td></td>
</tr>
</tbody>
</table>

Steps to Dividing a Whole Number and a Fraction:

Step 1: Convert whole numbers and mixed numbers to improper fractions.
Step 2: Keep your first fraction.
Step 3: Change the operation to multiplication.
Step 4: Flip the second fraction.
Step 5: Multiply the numerators then multiply the denominators.
Step 6: Simplify.

Ex: \[3 \div \frac{1}{4} \]

\[\frac{3}{1} \div \frac{1}{4} = \frac{3}{1} \times \frac{4}{1} = \frac{12}{1} = 12 \]
Guided Practice:

1. \[\frac{4}{1} \times \frac{6}{1} = \frac{24}{1} = 24 \]

2. \[\frac{2}{1} \times \frac{3}{1} = \frac{6}{1} = 6 \]

Practice:

1. \[5 \div \frac{3}{4} \]
 \[\frac{5}{1} \times \frac{4}{3} = \frac{20}{3} = 6 \frac{2}{3} \]

2. \[7 \div \frac{1}{7} \]
 \[\frac{7}{1} \times \frac{7}{1} = \frac{49}{1} = 49 \]
Talk Math: Explain the relationship between multiplication and division?

Multiplication and division are related because they are inverse operations. When dividing fraction you need to use the reciprocal.

PARCC Practice:

1. A farmer mows one-fifth of an acre each day. If his property has three acres, how many days will it take him to mow it all?

 A. 3 days
 B. 5 days
 C. 8 days
 D. 15 days

 \[\frac{3}{5} \div \frac{1}{5} = \frac{3}{5} \times \frac{5}{1} = 1 \]

2. Deb has a board that measures 5 feet in length. How many \(\frac{1}{4} \) foot long pieces can Deb cut from the board?

 A. 1
 B. 9
 C. 10
 D. 20

 \[\frac{5}{1} \div \frac{1}{4} = \frac{5}{1} \times \frac{4}{1} = 20 \]

Exit Ticket:

4. \(\frac{1}{5} \)

\[\frac{4}{5} \div \frac{1}{5} = \]

6. \(\frac{1}{2} \)

\[\frac{6}{2} = \]
Multiplying and Dividing Fractions Lesson 8
Dividing a Fraction by a Fraction

Standard: 5.NF.7
I CAN apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions.

Essential Question: What strategies can be used to multiply and divide fractions?

- Finding Area
- Scaling
- Modeling (Fraction Strips)

Steps to Dividing a Fraction by a Fraction:
Step 1: Keep your first fraction.
Step 2: Change the operation to multiplication.
Step 3: Flip the second fraction.
Step 4: Multiply the numerators then multiply the denominators.
Step 5: Simplify (if possible).

Ex: \[\frac{1}{2} \div \frac{1}{4} = \frac{1}{2} \times \frac{4}{1} = \frac{4}{2} = 2 \] \[\frac{1}{2} \times \frac{4}{1} = \frac{4}{2} = 2 \]
\[\frac{2}{14} \]
Guided Practice:

1. \(\frac{5}{8} \div \frac{7}{8} = \)
 \[
 \frac{5}{8} \times \frac{8}{7} = \frac{40}{56} = \frac{5}{7}
 \]

2. \(\frac{3}{5} + \frac{1}{2} = \)
 \[
 \frac{3}{5} \times \frac{2}{1} = \frac{6}{5} = \frac{12}{10}
 \]

Practice:

Fraction by a whole number

Ex: \(\frac{1}{3} \div 4 \)
 \[
 \frac{1}{3} \times \frac{4}{1} = \frac{4}{3}
 \]

Ex: \(\frac{2}{5} \div 7 \)
 \[
 \frac{2}{5} \times \frac{1}{7} = \frac{12}{35}
 \]
PARCC Practice:

1. Spencer has \(\frac{1}{3} \) pounds of berries. He divides the berries equally into \(\frac{1}{2} \) bags. What fraction of a pound of berries is in each bag?

 \[
 \frac{1}{3} \div \frac{1}{2} = \frac{1}{3} \times \frac{2}{1} = \frac{2}{3} = \frac{1\frac{1}{3}}{2}.
 \]

 Spencer will have \(1\frac{1}{3} \) pounds of berries in each bag.

Exit Ticket:

\[
\frac{2}{3} \div \frac{1}{4} = \]

\[
\frac{5}{6} \div \frac{1}{2} = \]

\[
\frac{1}{8} \div \frac{5}{6} = \]